

A081591


Third row of Pascal(1,6,1) array A081581.


3



1, 15, 78, 190, 351, 561, 820, 1128, 1485, 1891, 2346, 2850, 3403, 4005, 4656, 5356, 6105, 6903, 7750, 8646, 9591, 10585, 11628, 12720, 13861, 15051, 16290, 17578, 18915, 20301, 21736, 23220, 24753, 26335, 27966, 29646, 31375, 33153, 34980
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

1.Smallest triangular number T(k) (other than the trivial adjacent ones) such that T(n) + T(k) is a square. ( T(n1) and T(n+1) are trivial triangular numbers such that T(n) +T(n1) and T(n) + T(n+1) both are squares.) 0+1 = 1, 1+15 = 16, 3+ 78= 81, 6 + 190 = 196 etc. 2. (7n+5)th triangular number.  Amarnath Murthy, Jun 20 2003


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

a(n) = (221*n+49*n^2)/2.
G.f.: (1+6*x)^2/(1x)^3.
a(0)=1, a(1)=15, a(2)=78, a(n)=3*a(n1)3*a(n2)+a(n3)  From Harvey P. Dale, Aug 03 2012


MATHEMATICA

Table[(221n+49n^2)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, 3, 1}, {1, 15, 78}, 40] (* Harvey P. Dale, Aug 03 2012 *)


PROG

(MAGMA) [(221*n+49*n^2)/2: n in [0..50]]; // Vincenzo Librandi, Jun 18 2011


CROSSREFS

Cf. A016993, A081592.
Sequence in context: A205433 A128272 A180579 * A269620 A269436 A044202
Adjacent sequences: A081588 A081589 A081590 * A081592 A081593 A081594


KEYWORD

easy,nonn


AUTHOR

Paul Barry, Mar 23 2003


STATUS

approved



