login
A081565
Binomial transform of expansion of exp(3cosh(x)).
3
1, 1, 4, 10, 49, 181, 1039, 4915, 32134, 182206, 1330609, 8706655, 70012309, 515822581, 4517489344, 36835737130, 348313165249, 3103526872081, 31462900577419, 303344232041215, 3277823503679554, 33930282904263406
OFFSET
0,3
COMMENTS
Binomial transform of A081564.
LINKS
FORMULA
E.g.f.: exp(x) * exp(3*cosh(x))/e^3 = exp(3*cosh(x)+x-3).
MAPLE
seq(coeff(series(exp(3*cosh(x)+x-3), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
MATHEMATICA
With[{nn = 30}, CoefficientList[Series[Exp[3 Cosh[x] + x - 3], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(3*cosh(x)+x-3) )) \\ G. C. Greubel, Aug 13 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(3*Cosh(x)+x-3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2019
(Sage) [factorial(n)*( exp(3*cosh(x)+x-3) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 13 2019
CROSSREFS
Sequence in context: A335873 A364281 A173086 * A151611 A351046 A208236
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 22 2003
STATUS
approved