login
Triangle, read by rows, in which the n-th row contains n smallest n-digit numbers.
3

%I #23 May 29 2021 20:05:01

%S 1,10,11,100,101,102,1000,1001,1002,1003,10000,10001,10002,10003,

%T 10004,100000,100001,100002,100003,100004,100005,1000000,1000001,

%U 1000002,1000003,1000004,1000005,1000006,10000000,10000001,10000002,10000003,10000004,10000005,10000006,10000007

%N Triangle, read by rows, in which the n-th row contains n smallest n-digit numbers.

%C This sequence has asymptotic density 0 and Banach density 1 (see Mithun Kumar Das reference p.2). - _Franz Vrabec_, Jul 28 2019

%H G. C. Greubel, <a href="/A081551/b081551.txt">Rows n = 0..50 of the triangle, flattened</a>

%H Mithun Kumar Das, Pramod Eyyunni, and Bhuwanesh Rao Patil, <a href="https://arxiv.org/abs/1907.09847">Sparse subsets of the natural numbers and Euler's totient function</a>, arXiv:1907.09847v1 [math.NT] 23 Jul 2019.

%F From _Franz Vrabec_, Jul 28 2019: (Start)

%F T(n, k) = 10^(n-1) + k - 1.

%F As a one-dimensional sequence: a(n) = 10^m + n - (m^2 + m + 2)/2 where m = floor((-1 + sqrt(8*n-7))/2). (End)

%e Triangle begins as:

%e 1;

%e 10, 11;

%e 100, 101, 102;

%e 1000, 1001, 1002, 1003;

%e 10000, 10001, 10002, 10003, 10004;

%e 100000, 100001, 100002, 100003, 100004, 100005;

%t Table[10^(n-1) +k-1, {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, May 27 2021 *)

%o (Sage) flatten([[10^(n-1) +k-1 for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, May 27 2021

%Y Cf. A081552, A081553.

%K base,easy,nonn,tabl

%O 1,2

%A _Amarnath Murthy_, Apr 01 2003

%E More terms from _Philippe Deléham_, Mar 28 2009