login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081477 Complement of A086377. 5
2, 3, 5, 7, 9, 10, 12, 14, 15, 17, 19, 20, 22, 24, 26, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 44, 46, 48, 50, 51, 53, 55, 56, 58, 60, 61, 63, 65, 67, 68, 70, 72, 73, 75, 77, 79, 80, 82, 84, 85, 87, 89, 90, 92, 94, 96, 97, 99, 101, 102, 104, 106, 108, 109, 111, 113, 114, 116, 118 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The old entry with this sequence number was a duplicate of A003687.

Is A086377 the sequence of positions of 1 in A189687? - Clark Kimberling, Apr 25 2011

The answer to Kimberling's question is: yes. See the Bosma-Dekking-Steiner paper. - Michel Dekking, Oct 14 2018

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..5000

Wieb Bosma, Michel Dekking, Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), arXiv 1710.01498 math.NT (2018).

Wieb Bosma, Michel Dekking, Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A4.

MATHEMATICA

t = Nest[Flatten[# /. {0->{0, 1, 1}, 1->{0, 1}}] &, {0}, 5] (*A189687*)

f[n_] := t[[n]]

Flatten[Position[t, 0]] (* A086377 conjectured *)

Flatten[Position[t, 1]] (* A081477 conjectured *)

s[n_] := Sum[f[i], {i, 1, n}]; s[0] = 0;

Table[s[n], {n, 1, 120}] (*A189688*)

(* Clark Kimberling, Apr 25 2011 *)

CROSSREFS

Cf. A086377, A004641, A189687.

Sequence in context: A245227 A226249 A076355 * A083033 A022847 A047371

Adjacent sequences:  A081474 A081475 A081476 * A081478 A081479 A081480

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Oct 12 2008

EXTENSIONS

Name corrected by Michel Dekking, Jan 04 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 17:09 EST 2019. Contains 329337 sequences. (Running on oeis4.)