login
A081465
Consider the mapping f(a/b) = (a^2+b^2)/(a^2-b^2) from rationals to rationals. Starting with 2/1 (a=2, b=1) and applying the mapping to each new (reduced) rational number gives 2/1, 5/3, 17/8, 353/225, ... . Sequence gives values of the numerators.
3
2, 5, 17, 353, 87617, 9045146753, 60804857528809666817, 4138643330264389621194448797227488932353, 13864359953311401274177801350481278132199085263747363330276605034095638011503617
OFFSET
1,1
COMMENTS
For the mapping g(a/b) = (a^2+b)/(a+b^2), starting with 2/1 the same procedure leads to the periodic sequence 2, 5/3, 2, 5/3, ...
MATHEMATICA
nxt[n_]:=Module[{a=Numerator[n], b=Denominator[n]}, (a^2+b^2)/(a^2-b^2)]; Numerator/@NestList[nxt, 2/1, 10] (* Harvey P. Dale, Mar 19 2011 *)
PROG
(PARI) {r=2; for(n=1, 9, a=numerator(r); b=denominator(r); print1(a, ", "); r=(a^2+b^2)/(a^2-b^2))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Mar 22 2003
EXTENSIONS
Edited and extended by Klaus Brockhaus, Mar 24 2003
STATUS
approved