login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Consider the mapping f(r) = (1/2)*(r + N/r) from rationals to rationals where N = 5. Starting with r = 2 and applying the mapping to each new (reduced) rational number gives 2, 9/4, 161/72, 51841/23184, ..., tending to N^(1/2). Sequence gives values of the numerators.
10

%I #37 Apr 17 2023 17:24:11

%S 2,9,161,51841,5374978561,57780789062419261441,

%T 6677239169351578707225356193679818792961,

%U 89171045849445921581733341920411050611581102638589828325078491812417901966295041

%N Consider the mapping f(r) = (1/2)*(r + N/r) from rationals to rationals where N = 5. Starting with r = 2 and applying the mapping to each new (reduced) rational number gives 2, 9/4, 161/72, 51841/23184, ..., tending to N^(1/2). Sequence gives values of the numerators.

%C Related sequence pairs (numerator, denominator) can be obtained by choosing N = 2, 3, 6 etc.

%C The sequence satisfies the Pell equation a(n+1)^2 - 5*A081460(n+1)^2 = 1. - _Vincenzo Librandi_, Dec 20 2011

%H Vincenzo Librandi, <a href="/A081459/b081459.txt">Table of n, a(n) for n = 1..11</a>

%F a(n) = a(n-1)^2 + 5*A081460(n-1)^2. - Mario Catalani (mario.catalani(AT)unito.it), May 21 2003

%F a(n) = (1/2)*(((4+2*sqrt(5))/2)^(2^(n-1)) + ((4-2*sqrt(5))/2)^(2^(n-1))). a(n+1) = 2*a(n)^2 - 1 for n > 1. - _Artur Jasinski_, Oct 12 2008

%F a(n) = A000032(3*2^(n-1))/2. - _Ehren Metcalfe_, Oct 05 2017

%F a(n) = A001077(2^(n-1)). - _Robert FERREOL_, Apr 16 2023

%t k = 4; Table[Simplify[Expand[(1/2) (((k + Sqrt[k^2 + 4])/2)^(2^(n - 1)) + ((k - Sqrt[k^2 + 4])/2)^(2^(n - 1)))]], {n, 1, 6}] (* _Artur Jasinski_, Oct 12 2008 *)

%t aa = {}; k = 9; Do[AppendTo[aa, k]; k = 2 k^2 - 1, {n, 1, 5}]; aa (* _Artur Jasinski_, Oct 12 2008 *)

%o (PARI) {r=2; N=5; for(n=1,8,a=numerator(r); b=denominator(r); print1(a,","); r=(1/2)*(r + N/r) )}

%o (Magma) m:=8; f:=[ n eq 1 select 2 else (Self(n-1)+5/Self(n-1))/2: n in [1..m] ]; [ Numerator(f[n]): n in [1..m] ]; // _Bruno Berselli_, Dec 20 2011

%Y Cf. A000032, A000129, A001333, A081460.

%K nonn

%O 1,1

%A _Amarnath Murthy_, Mar 22 2003

%E Edited and extended by _Klaus Brockhaus_ and Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003