login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081411 Partial product of prime gaps: a(n) = a(n-1)*(prime(n+1) - prime(n)). 2
1, 2, 4, 16, 32, 128, 256, 1024, 6144, 12288, 73728, 294912, 589824, 2359296, 14155776, 84934656, 169869312, 1019215872, 4076863488, 8153726976, 48922361856, 195689447424, 1174136684544, 9393093476352, 37572373905408, 75144747810816, 300578991243264, 601157982486528 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Original name was: Generated by recursion: a(n)=(Mod[Prime[n+1],Prime[n]]*n[n-1]; a[0]=1; Product of the first n consecutive prime-differences.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..1244

FORMULA

Sum_{n>=1} 1/a(n) = A099002. - Amiram Eldar, Nov 19 2020

MATHEMATICA

a[1] = 1; a[n_] := a[n] = a[n - 1] * (Prime[n + 1] - Prime[n]); Array[a, 30] (* Amiram Eldar, Nov 19 2020 *)

PROG

(PARI) diff(v)=vector(#v-1, i, v[i+1]-v[i])

pprod(v)=my(t=1); vector(#v, i, t*=v[i])

pprod(diff(primes(50))) \\ Charles R Greathouse IV, Mar 27 2014

CROSSREFS

Cf. A001223, A080374, A080375, A080376, A099002.

Sequence in context: A334083 A274497 A145119 * A269758 A094384 A053038

Adjacent sequences:  A081408 A081409 A081410 * A081412 A081413 A081414

KEYWORD

nonn

AUTHOR

Labos Elemer, Apr 01 2003

EXTENSIONS

New name from Charles R Greathouse IV, Mar 27 2014

More terms from Amiram Eldar, Nov 19 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 07:42 EST 2021. Contains 340267 sequences. (Running on oeis4.)