%I #7 Oct 14 2014 03:45:27
%S 1,2,1,2,3,3,3,8,1,11,3,5,3,14,8,25,9,29,16,11,18,34,37,6
%N Number of distinct edge lengths in the convex hull of the maximal volume arrangements of n points on a sphere.
%D See under A081314.
%H Hugo Pfoertner, <a href="http://www.randomwalk.de/sphere/volmax/edgelist.txt">Maximal Volume Arrangements:</a> List of edges.
%e a(8)=3 because the corresponding arrangement has 6 edges of length 1.1383499, 8 edges of length 1.264911.. and 4 edges of length 1.4554505, i.e. 3 distinct edge lengths.
%Y Symmetry groups of maximal volume arrangements: A081314. Distinct distances for minimal energy configurations: A033177.
%K nonn,hard,more
%O 4,2
%A _Hugo Pfoertner_, Mar 19 2003