This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081341 Expansion of exp(3*x)*cosh(3*x). 13
 1, 3, 18, 108, 648, 3888, 23328, 139968, 839808, 5038848, 30233088, 181398528, 1088391168, 6530347008, 39182082048, 235092492288, 1410554953728, 8463329722368, 50779978334208, 304679870005248, 1828079220031488, 10968475320188928, 65810851921133568 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A081340. 3rd binomial transform of (1,0,9,0,81,0,729,0,..). For m>1, n>0, A166469(A002110(m)*a(n))=(n+1)*A000045(m+1). For n>0, A166469(a(n))=2n. [Matthew Vandermast, Nov 05 2009] Number of compositions of even natural numbers in n parts <=5. [Adi Dani, May 29 2011] LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..125 Index entries for linear recurrences with constant coefficients, signature (6). FORMULA a(0)=1, a(n) = 6^n/2, n>0 G.f.: (1-3*x)/(1-6*x). E.g.f.: exp(3*x)*cosh(3*x). a(n) = A000244(n)*A011782(n). [Philippe Deléham, Dec 01 2008] a(n) = ((3+sqrt(9))^n+(3-sqrt(9))^n/2. [Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008] a(n) = Sum_{k, 0<=k<=n} A134309(n,k)*3^k = Sum_{k, 0<=k<=n} A055372(n,k)*2^k. - Philippe Deléham, Feb 04 2012 From Sergei N. Gladkovskii, Jul 19 2012: (Start) a(n) = ((8*n-4)*a(n-1)-12*(n-2)*a(n-2))/n , a(0)=1, a(1)=3. E.g.f. (exp(6*x)+1)/2 = 1 + 3*x/(G(0) - 6*x) where G(k)= 6*x + 1 + k - 6*x*(k+1)/G(k+1)  (continued fraction, Euler's 1st kind, 1-step). (End) "INVERT" transform of A000244. - Alois P. Heinz, Sep 22 2017 EXAMPLE From Adi Dani, May 29 2011: (Start) a(2)=18: there are 18 compositions of even natural numbers into 2 parts <=5 for 0: (0,0); for 2: (0,2),(2,0),(1,1); for 4: (0,4),(4,0),(1,3),(3,1),(2,2); for 6: (1,5),(5,1),(2,4),(4,2),(3,3); for 8:(3,5),(5,3),(4,4); for 10: (5,5).  (End) MAPLE a:= proc(n) option remember; `if`(n=0, 1,       add(3^j*a(n-j), j=1..n))     end: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2017 MATHEMATICA Table[Ceiling[1/2(6^n)], {n, 0, 25}] CoefficientList[Series[-(-1 + 3 x)/(1 - 6 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *) PROG (PARI) x='x+O('x^66); /* that many terms */ Vec((1-3*x)/(1-6*x)) /* show terms */ /* Joerg Arndt, May 29 2011 */ CROSSREFS Cf. A000244, A034494, A081340, A081342. Sequence in context: A137962 A267662 A169604 * A132900 A050623 A037760 Adjacent sequences:  A081338 A081339 A081340 * A081342 A081343 A081344 KEYWORD easy,nonn AUTHOR Paul Barry, Mar 18 2003 EXTENSIONS Typo in A-number fixed by Klaus Brockhaus, Apr 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 17:19 EDT 2018. Contains 305672 sequences. (Running on oeis4.)