OFFSET
0,4
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
FORMULA
G.f.: x*(1+x^3)/((1-x)*(1-x^2)^4).
a(n) = (2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(2*n^2+2*(5+(-1)^n)*n+27-11*(-1)^n)/1536. - Luce ETIENNE, Mar 11 2015
MAPLE
A081283:=n->(2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(2*n^2+2*(5+(-1)^n)*n+27-11*(-1)^n)/1536: seq(A081283(n), n=0..80); # Wesley Ivan Hurt, Apr 18 2017
MATHEMATICA
CoefficientList[Series[x (1 + x^3) / ((1 - x) (1 - x^2)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 17 2003
STATUS
approved