login
A081272
Downward vertical of triangular spiral in A051682.
4
1, 25, 85, 181, 313, 481, 685, 925, 1201, 1513, 1861, 2245, 2665, 3121, 3613, 4141, 4705, 5305, 5941, 6613, 7321, 8065, 8845, 9661, 10513, 11401, 12325, 13285, 14281, 15313, 16381, 17485, 18625, 19801, 21013, 22261, 23545, 24865, 26221, 27613, 29041, 30505
OFFSET
0,2
COMMENTS
Reflection of A081271 in the horizontal A051682.
Binomial transform of (1, 24, 36, 0, 0, 0, .....).
One of the six verticals of a triangular spiral which starts with 1 (see the link). Other verticals are A060544, A081589, A080855, A157889, A038764. - Yuriy Sibirmovsky, Sep 18 2016.
LINKS
Kaie Kubjas, Luca Sodomaco, and Elias Tsigaridas, Exact solutions in low-rank approximation with zeros, arXiv:2010.15636 [math.AG], 2020.
FORMULA
a(n) = C(n, 0) + 24*C(n, 1) + 36*C(n, 2).
a(n) = 18*n^2 + 6*n + 1.
G.f.: (1 + 22*x + 13*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(1 + 24*x + 18*x^2). - Stefano Spezia, Mar 07 2023
MATHEMATICA
Table[n^2 + (n + 1)^2, {n, 0, 300, 3}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 25, 85}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
Table[n^2 + (n + 1)^2, {n, 0, 150, 3}] (* Vincenzo Librandi, Aug 07 2013 *)
PROG
(PARI) x='x+O('x^99); Vec((1+22*x+13*x^2)/(1-x)^3) \\ Altug Alkan, Sep 18 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 15 2003
STATUS
approved