login
Number of distinct (modulo rotation and reflection) n X n associative panmagic squares.
2

%I #20 Jun 02 2024 13:02:02

%S 1,0,0,0,16,0,20190684

%N Number of distinct (modulo rotation and reflection) n X n associative panmagic squares.

%C It is known that a(10)=0.

%C _Walter Trump_ estimates a(8) ~= 4.677*10^15 and a(9) ~= 1.363*10^24.

%D Gardner, M. "Magic Squares and Cubes." Ch. 17 in Time Travel and Other Mathematical Bewilderments. New York: W.H. Freeman, pp. 213-225, 1988.

%H Walter Trump, <a href="http://www.trump.de/magic-squares/howmany.html">How many magic squares are there? - Results of historical and computer enumeration</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AssociativeMagicSquare.html">Associative Magic Square</a>

%H <a href="/index/Mag#magic">Index entries for sequences related to magic squares</a>

%Y Cf. A006052, A081262.

%K nonn,hard,more

%O 1,5

%A _Eric W. Weisstein_, Mar 14 2003

%E a(6)-a(7) from _Walter Trump_'s website, added by _Max Alekseyev_, May 22 2008