login
A081221
Number of consecutive numbers >= n having at least one square divisor > 1.
5
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 3, 2, 1, 0, 0, 0, 1, 0
OFFSET
1,8
COMMENTS
The first time terms 0..7 occur is at n = 1, 4, 8, 48, 242, 844, 22020, 217070. - Antti Karttunen, Sep 22 2017
LINKS
FORMULA
mu(k) = 0 for n <= k < n+a(n) and mu(n+a(n)) <> 0, where mu = A008683 (Moebius function).
a(n)*mu(n) = 0.
a(A068781(n)) > 0.
a(n) = A067535(n) - n. - Amiram Eldar, Oct 10 2023
EXAMPLE
For n = 3, 3 is a squarefree number, thus a(3) = 0.
For n = 48, neither 48 = 2^4 * 3 nor 49 = 7^2, nor 50 = 2^2 * 5 are squarefree, but 51 = 3*17 is, thus a(48) = 3. - Antti Karttunen, Sep 22 2017
MATHEMATICA
Flatten@ Map[If[First@ # == 0, #, Reverse@ Range@ Length@ #] &, SplitBy[Table[DivisorSum[n, 1 &, And[# > 1, IntegerQ@ Sqrt@ #] &], {n, 120}], # > 0 &]] (* Michael De Vlieger, Sep 22 2017 *)
PROG
(PARI) A081221(n) = { my(k=0); while(!issquarefree(n+k), k++); k; }; \\ Antti Karttunen, Sep 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 10 2003
STATUS
approved