This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081199 5th binomial transform of (0,1,0,1,...), A000035. 7
 0, 1, 10, 76, 520, 3376, 21280, 131776, 807040, 4907776, 29708800, 179301376, 1080002560, 6496792576, 39047864320, 234555621376, 1408407470080, 8454739787776, 50745618595840, 304542431051776, 1827529464217600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform of A005059. Conjecture (verified up to a(9)): Number of collinear 4-tuples of points in a 4 X 4 X 4 X ... n-dimensional cubic grid. - R. H. Hardin, May 24 2010 a(n) is also the total number of words of length n, over an alphabet of six letters, of which one of them appears an odd number of times. See a Lekraj Beedassy, Jul 22 2003, comment on A006516 (4-letter case), and the Balakrishnan reference there. For the 2-, 3-, 5- and 7-letter case analogs see A131577, A003462, A005059 and A081200, respectively. - Wolfdieter Lang, Jul 16 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (10,-24). FORMULA a(n) = 10*a(n-1) - 24*a(n-2) with n>1, a(0)=0, a(1)=1. G.f.: x/((1-4*x)*(1-6*x)). a(n) = 6^n/2 - 4^n/2. MAPLE seq(add(2^(2*n-k)*binomial(n, k)/2, k=1..n), n=0..20); # Zerinvary Lajos, Apr 18 2009 MATHEMATICA CoefficientList[Series[x / ((1 - 4 x) (1 - 6 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 07 2013 *) LinearRecurrence[{10, -24}, {0, 1}, 21] (* Michael De Vlieger, Jul 16 2017 *) PROG (MAGMA) [6^n/2-4^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013 CROSSREFS Cf. A000035, A003462, A005059, A006516, A016149, A081200 (binomial transform of a(n), and 7-letter case), A131577. Sequence in context: A061319 A223994 A016149 * A198692 A215465 A169584 Adjacent sequences:  A081196 A081197 A081198 * A081200 A081201 A081202 KEYWORD nonn,easy AUTHOR Paul Barry, Mar 11 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.