This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081184 7th binomial transform of (0,1,0,2,0,4,0,8,0,16,...). 5
 0, 1, 14, 149, 1428, 12989, 114730, 995737, 8548008, 72872473, 618458246, 5233409213, 44200191420, 372832446869, 3142245259426, 26468308629121, 222870793614672, 1876180605036721, 15791601170624510, 132901927952017253 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014. Index entries for linear recurrences with constant coefficients, signature (14,-47). FORMULA a(n) = 14*a(n-1) - 47*a(n-2), a(0)=0, a(1)=1. G.f.: x/(1 - 14*x + 47*x^2). [Corrected by Georg Fischer, May 15 2019] a(n) = ((7 + sqrt(2))^n - (7 - sqrt(2))^n)/(2*sqrt(2)). a(n) = Sum_{k=0..n} C(n,2*k+1) * 2^k * 7^(n-2*k-1). E.g.f.: exp(7*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017 MATHEMATICA Join[{a=1, b=14}, Table[c=14*b-47*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *) CoefficientList[Series[x / (1 - 14 x + 47 x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *) LinearRecurrence[{14, -47}, {0, 1}, 30] (* Harvey P. Dale, Nov 12 2013 *) PROG (MAGMA) [n le 2 select n-1 else 14*Self(n-1)-47*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 07 2013 CROSSREFS Binomial transform of A081183. Cf. A081185, A081183. Sequence in context: A065899 A162965 A067103 * A032343 A222614 A019521 Adjacent sequences:  A081181 A081182 A081183 * A081185 A081186 A081187 KEYWORD nonn,easy AUTHOR Paul Barry, Mar 11 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 22:53 EDT 2019. Contains 327147 sequences. (Running on oeis4.)