This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081180 4th binomial transform of (0,1,0,2,0,4,0,8,0,16,...). 9
 0, 1, 8, 50, 288, 1604, 8800, 47944, 260352, 1411600, 7647872, 41420576, 224294400, 1214467136, 6575615488, 35602384000, 192760455168, 1043650265344, 5650555750400, 30593342288384, 165638957801472, 896804870374400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014. Index entries for linear recurrences with constant coefficients, signature (8,-14). FORMULA a(n) = 8a(n-1) - 14a(n-2), a(0)=0, a(1)=1. G.f.: x/(1 - 8x + 14x^2). a(n) = ((4 + sqrt(2))^n - (4 - sqrt(2))^n/(2*sqrt(2)). a(n) = Sum_{k=0..n} C(n,2k+1) 2^k*4^(n-2k-1). If shifted once left, fourth binomial transform of A143095. - Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009, R. J. Mathar, Oct 15 2009 E.g.f.: exp(4*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017 MATHEMATICA Join[{a=0, b=1}, Table[c=8*b-14*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011 *) CoefficientList[Series[x / (1 - 8 x + 14 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *) LinearRecurrence[{8, -14}, {0, 1}, 30] (* Harvey P. Dale, Aug 17 2019 *) PROG (Sage) [lucas_number1(n, 8, 14) for n in xrange(0, 22)] # Zerinvary Lajos, Apr 23 2009 (MAGMA) I:=[0, 1]; [n le 2 select I[n] else 8*Self(n-1)-14*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013 CROSSREFS Binomial transform of A081179. Cf. A081182. Sequence in context: A133357 A081675 A283277 * A052177 A127745 A243876 Adjacent sequences:  A081177 A081178 A081179 * A081181 A081182 A081183 KEYWORD easy,nonn AUTHOR Paul Barry, Mar 11 2003 EXTENSIONS Modified the completing comment on the fourth binomial transform - R. J. Mathar, Oct 15 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 12:56 EDT 2019. Contains 327131 sequences. (Running on oeis4.)