OFFSET
1,2
COMMENTS
T(n,n) = A036563(n+1) = 2^(n+1) - 3.
Numbers of the form 2^t - 2^k - 1, 1 <= k < t.
LINKS
Reinhard Zumkeller, Rows n=1..150 of triangle, flattened
FORMULA
T(n, k) = 2^(n+1) - 2^(n-k+1) - 1, 1<=k<=n.
a(n) = (2^A002260(n)-1)*2^A004736(n)-1; a(n)=(2^i-1)*2^j-1, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Apr 04 2013
EXAMPLE
Triangle begins:
.......... 1 ......... ................ 1
........ 3...5 ....... .............. 11 101
...... 7..11..13 ..... .......... 111 1011 1101
... 15..23..27..29 ... ...... 1111 10111 11011 11101
. 31..47..55..59..61 . . 11111 101111 110111 111011 111101.
MATHEMATICA
Table[2^(n+1)-2^(n-k+1)-1, {n, 10}, {k, n}]//Flatten (* Harvey P. Dale, Apr 09 2020 *)
PROG
(Haskell)
a081118 n k = a081118_tabl !! (n-1) !! (k-1)
a081118_row n = a081118_tabl !! (n-1)
a081118_tabl = iterate
(\row -> (map ((+ 1) . (* 2)) row) ++ [4 * (head row) + 1]) [1]
a081118_list = concat a081118_tabl
-- Reinhard Zumkeller, Feb 23 2012
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Mar 06 2003
STATUS
approved