login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081071 a(n) = Lucas(4*n+2)-2, or Lucas(2*n+1)^2. 6
1, 16, 121, 841, 5776, 39601, 271441, 1860496, 12752041, 87403801, 599074576, 4106118241, 28143753121, 192900153616, 1322157322201, 9062201101801, 62113250390416, 425730551631121, 2918000611027441, 20000273725560976 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Conjecture: a(n) = Fibonacci(4*n+3) + Sum_{k=2..2*n} Fibonacci(2*k). - Alex Ratushnyak, May 06 2012

REFERENCES

Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (8,-8,1).

FORMULA

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).

a(n) = -2 + (3/2) * ((7/2 - (3/2)*sqrt(5))^n + (7/2 + (3/2)*sqrt(5))^n) + (1/2)*sqrt(5)*((7/2 + (3/2)*sqrt(5))^n - (7/2 - (3/2)*sqrt(5))^n), with n >= 0. - Paolo P. Lava, Dec 01 2008

G.f.: -(1+8*x+x^2)/((x-1)*(x^2-7*x+1)). - Colin Barker, Jun 26 2012

From Peter Bala, Nov 19 2019: (Start)

Sum_{n >= 1} 1/(a(n) + 5) = (3*sqrt(5) - 5)/30.

Sum_{n >= 1} 1/(a(n) - 5) = (15 - 4*sqrt(5) )/60.

Sum_{n >= 1} (-1)^(n+1)/(a(n) - 5) = 1/12.

Sum_{n >= 1} (-1)^(n+1)/(a(n) - 25/a(n)) = (5 + 2*sqrt(5))/120. (End)

Sum_{n>=0} 1/a(n) = (1/sqrt(5)) * Sum_{n>=1} n/F(2*n), where F(n) is the n-th Fibonacci number (A000045). - Amiram Eldar, Oct 05 2020

MAPLE

luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d, `, luc(4*n+2)-2) od: # James A. Sellers, Mar 05 2003

MATHEMATICA

CoefficientList[Series[-(1+8*x+x^2)/((x-1)*(x^2-7*x+1)), {x, 0, 40}], x] (* or *) LinearRecurrence[{8, -8, 1}, {1, 16, 121}, 50] (* Vincenzo Librandi, Jun 26 2012 *)

LucasL[4*Range[0, 20]+2]-2 (* Harvey P. Dale, Nov 25 2012 *)

PROG

(Magma) I:=[1, 16, 121]; [n le 3 select I[n] else 8*Self(n-1)-8*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012

(PARI) x='x+O('x^30); Vec((1+8*x+x^2)/((1-x)*(x^2-7*x+1))) \\ G. C. Greubel, Dec 21 2017

CROSSREFS

Cf. A000032 (Lucas numbers), A000045, A002878 is Lucas(2n+1), A081069.

Sequence in context: A191902 A294140 A014765 * A217022 A069658 A069667

Adjacent sequences: A081068 A081069 A081070 * A081072 A081073 A081074

KEYWORD

nonn,easy

AUTHOR

R. K. Guy, Mar 04 2003

EXTENSIONS

More terms from James A. Sellers, Mar 05 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 19:19 EST 2022. Contains 358669 sequences. (Running on oeis4.)