login
A081056
Number of partitions of 2n+1 in which no parts are multiples of 4.
4
1, 3, 6, 12, 22, 38, 64, 105, 166, 258, 395, 592, 876, 1280, 1846, 2636, 3728, 5222, 7256, 10006, 13696, 18624, 25169, 33808, 45164, 60022, 79366, 104457, 136870, 178572, 232044, 300368, 387366, 497804, 637568, 813910, 1035792, 1314214
OFFSET
0,2
COMMENTS
Euler transform of period 16 sequence [3,0,2,1,2,1,3,0,3,1,2,1,2,0,3,0,...].
LINKS
FORMULA
G.f.: (sum_{n>=0} x^A074377(n))/(sum_n (-x)^n^2).
a(n) = A001935(2n+1).
a(n) ~ exp(Pi*sqrt(n)) / (2^(7/2) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
MATHEMATICA
Table[Count[IntegerPartitions[2n+1], _?(Total[Boole[Divisible[#, 4]]]==0&)], {n, 0, 40}] (* Harvey P. Dale, Sep 11 2019 *)
PROG
(PARI) a(n)=local(X); if(n<0, 0, X=x+x^2*O(x^(2*n)); polcoeff(eta(X^4)/eta(X), 2*n+1))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Mar 03 2003
STATUS
approved