login
6th binomial transform of (1,5,0,0,0,0,0,0,...).
3

%I #25 Sep 08 2022 08:45:09

%S 1,11,96,756,5616,40176,279936,1912896,12877056,85660416,564350976,

%T 3688436736,23944605696,154551545856,992612745216,6347497291776,

%U 40435908673536,256721001578496,1624959306694656,10257555623510016

%N 6th binomial transform of (1,5,0,0,0,0,0,0,...).

%H Vincenzo Librandi, <a href="/A081041/b081041.txt">Table of n, a(n) for n = 0..300</a>

%H Silvana Ramaj, <a href="https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=3464&amp;context=etd">New Results on Cyclic Compositions and Multicompositions</a>, Master's Thesis, Georgia Southern Univ., 2021. See p. 67.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-36).

%F a(n) = 12*a(n-1) - 36*a(n-2) for n>1, a(0)=1, a(1)=9.

%F a(n) = (5*n+6)*6^(n-1).

%F a(n) = Sum_{k=0..n} (k+1)*5^k*binomial(n, k).

%F G.f.: (1-x)/(1-6x)^2.

%t CoefficientList[Series[(1 - x)/(1 - 6 x)^2, {x, 0, 30}], x] (* _Vincenzo Librandi_, Aug 06 2013 *)

%t LinearRecurrence[{12,-36},{1,11},20] (* _Harvey P. Dale_, Mar 04 2019 *)

%o (Magma) [(5*n+6)*6^(n-1): n in [0..25]]; // _Vincenzo Librandi_, Aug 06 2013

%Y Cf. A081040, A081042.

%K nonn,easy

%O 0,2

%A _Paul Barry_, Mar 04 2003