login
a(n) = Fibonacci(4n+2) - 1, or Fibonacci(2n)*Lucas(2n+2).
2

%I #31 Jan 08 2024 07:08:20

%S 0,7,54,376,2583,17710,121392,832039,5702886,39088168,267914295,

%T 1836311902,12586269024,86267571271,591286729878,4052739537880,

%U 27777890035287,190392490709134,1304969544928656,8944394323791463,61305790721611590,420196140727489672

%N a(n) = Fibonacci(4n+2) - 1, or Fibonacci(2n)*Lucas(2n+2).

%D Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

%H Nathaniel Johnston, <a href="/A081008/b081008.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8,1).

%F a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).

%F G.f.: x*(7-2*x)/((1-x)*(1-7*x+x^2)). - _Colin Barker_, Jun 24 2012

%p with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+2)-1) od # _James A. Sellers_, Mar 03 2003

%t Fibonacci[4Range[25]-2]-1 (* or *)

%t LinearRecurrence[{8,-8,1},{0,7,54},25] (* _Paolo Xausa_, Jan 08 2024 *)

%o (Magma) [Fibonacci(4*n+2)-1: n in [0..30]]; // _Vincenzo Librandi_, Apr 15 2011

%o (PARI) vector(30, n, n--; fibonacci(4*n+2)-1) \\ _G. C. Greubel_, Jul 14 2019

%o (Sage) [fibonacci(4*n+2)-1 for n in (0..30)] # _G. C. Greubel_, Jul 14 2019

%o (GAP) List([0..30], n-> Fibonacci(4*n+2)-1); # _G. C. Greubel_, Jul 14 2019

%Y Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).

%K nonn,easy

%O 0,2

%A _R. K. Guy_, Mar 01 2003

%E More terms from _James A. Sellers_, Mar 03 2003