login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080965 Expansion of eta(q^2)^12/(eta(q)^4eta(q^4)^5) in powers of q. 4

%I

%S 1,4,2,-8,-4,8,-8,-16,6,12,8,-8,-8,24,0,-16,12,16,10,-24,-8,16,-24,

%T -16,8,28,8,-32,-16,8,0,-32,6,32,16,-16,-12,40,-24,-16,24,16,16,-40,

%U -8,40,0,-32,24,36,10,-16,-24,24,-32,-48,0,32,24,-24,-16,40,0,-48,12,16,16

%N Expansion of eta(q^2)^12/(eta(q)^4eta(q^4)^5) in powers of q.

%C Euler transform of period 4 sequence [4,-8,4,-3,...].

%H Alois P. Heinz, <a href="/A080965/b080965.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: Product_{n>0} (1-x^(2n))^12/((1-x^n)^4(1-x^(4n))^5).

%p with(numtheory):

%p a:= proc(n) option remember; `if`(n=0, 1, add(add([-3, 4, -8, 4]

%p [1+irem(d, 4)]*d, d=divisors(j)) *a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Mar 05 2015

%t a[n_] := a[n] = If[n==0, 1, Sum[DivisorSum[j, {-3, 4, -8, 4}[[1 + Mod[#, 4]]]*#&]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100}] (* _Jean-Fran├žois Alcover_, Nov 25 2015, after _Alois P. Heinz_ *)

%o (PARI) a(n)=local(X); if(n<0,0,X=x+x*O(x^n); polcoeff(eta(X)^-4*eta(X^2)^12*eta(X^4)^-5,n))

%Y a(n)=A080964(4n)=2*A072071(4n)-A072070(4n).

%Y A083703(n)=(-1)^n a(n). a(2n)=0 iff n in A004215 (checked up to n=343).

%Y a(2n)=0 iff A005875(n)=0.

%K sign

%O 0,2

%A _Michael Somos_, Feb 28 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 03:33 EDT 2019. Contains 326139 sequences. (Running on oeis4.)