The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080872 a(n)*a(n+3) - a(n+1)*a(n+2) = 4, given a(0)=a(1)=1, a(2)=5. 6
 1, 1, 5, 9, 49, 89, 485, 881, 4801, 8721, 47525, 86329, 470449, 854569, 4656965, 8459361, 46099201, 83739041, 456335045, 828931049, 4517251249, 8205571449, 44716177445, 81226783441, 442644523201, 804062262961, 4381729054565, 7959395846169, 43374646022449, 78789896198729, 429364731169925 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..2000 Index entries for linear recurrences with constant coefficients, signature (0, 10, 0, -1). FORMULA G.f.: (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1). a(n) = (3+sqrt(3))/12*(sqrt(3)-sqrt(2))^n+(3-sqrt(3))/12*(-sqrt(3)+sqrt(2))^n+(3+sqrt(3))/12*(sqrt(3)+sqrt(2))^n+(3-sqrt(3))/12*(-sqrt(3)-sqrt(2))^n. [Richard Choulet, Dec 03 2008] a(n+4) = 10*a(n+2)-a(n). [Richard Choulet, Dec 04 2008] MATHEMATICA CoefficientList[Series[(-x^3-5 x^2+x+1)/(x^4-10 x^2+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, 10, 0, -1}, {1, 1, 5, 9}, 30] (* Harvey P. Dale, May 06 2012 *) PROG (PARI) Vec( (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1) + O(x^66) ) \\ Joerg Arndt, Jan 29 2016 CROSSREFS Cf. A080871, A080873, A080874, A080875. Bisections are A001079 and A072256. Sequence in context: A088974 A105182 A100457 * A328333 A173776 A289909 Adjacent sequences:  A080869 A080870 A080871 * A080873 A080874 A080875 KEYWORD nonn,easy AUTHOR Paul D. Hanna, Feb 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 01:48 EST 2020. Contains 331166 sequences. (Running on oeis4.)