

A080825


Triangle read by rows in which nth row gives trajectory of n (omitting n itself) under the map k > k1 if k odd, k > k/2 if k even.


5



1, 2, 1, 2, 1, 4, 2, 1, 3, 2, 1, 6, 3, 2, 1, 4, 2, 1, 8, 4, 2, 1, 5, 4, 2, 1, 10, 5, 4, 2, 1, 6, 3, 2, 1, 12, 6, 3, 2, 1, 7, 6, 3, 2, 1, 14, 7, 6, 3, 2, 1, 8, 4, 2, 1, 16, 8, 4, 2, 1, 9, 8, 4, 2, 1, 18, 9, 8, 4, 2, 1, 10, 5, 4, 2, 1, 20, 10, 5, 4, 2, 1, 11, 10, 5, 4, 2, 1, 22, 11, 10, 5, 4, 2, 1, 12, 6, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

If you write down 0 when divide by 2, 1 when subtract 1, the trajectory gives the binary expansion of n.


LINKS

Table of n, a(n) for n=2..99.


EXAMPLE

Triangle begins:
1;
2,1;
2,1;
4,2,1;
3,2,1;
6,3,2,1;
...
7 > 6 > 3 > 2 > 1, so the 7th row is 6,3,2,1.


PROG

(PARI) xnm1(n, p) = { print1(1" "); for(x=1, n, p1 = x; while(p1>1, if(p1%2==0, p1/=2, p1 = p1*p1; ); print1(p1" ") ) ) }


CROSSREFS

A082404 is a better version.
Sequence in context: A321368 A100380 A205403 * A229724 A034693 A216506
Adjacent sequences: A080822 A080823 A080824 * A080826 A080827 A080828


KEYWORD

easy,nonn,tabf


AUTHOR

Cino Hilliard, Mar 27 2003


EXTENSIONS

Edited by N. J. A. Sloane, Dec 06 2008 at the suggestion of R. J. Mathar


STATUS

approved



