This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080735 a(1)=1, then a(n)=2*a(n-1) if a(n-1) is prime, a(n)=a(n-1)+1 otherwise. 2
 1, 2, 4, 5, 10, 11, 22, 23, 46, 47, 94, 95, 96, 97, 194, 195, 196, 197, 394, 395, 396, 397, 794, 795, 796, 797, 1594, 1595, 1596, 1597, 3194, 3195, 3196, 3197, 3198, 3199, 3200, 3201, 3202, 3203, 6406, 6407, 6408, 6409, 6410, 6411, 6412, 6413, 6414, 6415, 6416 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Conjectures: (Strong) Let x,y be 2 positive integers and define a(n) as a(1)=1, a(n)=x*a(n-1) if a(n-1) is prime, a(n)=a(n-1)+y otherwise; then limit n ->infinity log(a(n))/sqrt(n)=C(x,y) exists. (Weak) log(a(n))/sqrt(n) is bounded. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 FORMULA It seems that log(a(n))/sqrt(n) -> C, a constant around 1.3..... MATHEMATICA NestList[If[PrimeQ[#], 2#, #+1]&, 1, 50] (* Harvey P. Dale, Aug 26 2013 *) PROG (PARI) u=1; for(n=2, 100, v=if(isprime(u), u+1, 2*u); u=v; print1(v, ", ")) CROSSREFS Cf. A163962. Sequence in context: A109511 A018339 A128216 * A091856 A083416 A022770 Adjacent sequences:  A080732 A080733 A080734 * A080736 A080737 A080738 KEYWORD nonn AUTHOR Benoit Cloitre, Mar 08 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.