login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080735 a(1)=1, then a(n)=2*a(n-1) if a(n-1) is prime, a(n)=a(n-1)+1 otherwise. 2
1, 2, 4, 5, 10, 11, 22, 23, 46, 47, 94, 95, 96, 97, 194, 195, 196, 197, 394, 395, 396, 397, 794, 795, 796, 797, 1594, 1595, 1596, 1597, 3194, 3195, 3196, 3197, 3198, 3199, 3200, 3201, 3202, 3203, 6406, 6407, 6408, 6409, 6410, 6411, 6412, 6413, 6414, 6415, 6416 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Conjectures: (Strong) Let x,y be 2 positive integers and define a(n) as a(1)=1, a(n)=x*a(n-1) if a(n-1) is prime, a(n)=a(n-1)+y otherwise; then limit n ->infinity log(a(n))/sqrt(n)=C(x,y) exists. (Weak) log(a(n))/sqrt(n) is bounded.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

FORMULA

It seems that log(a(n))/sqrt(n) -> C, a constant around 1.3.....

MATHEMATICA

NestList[If[PrimeQ[#], 2#, #+1]&, 1, 50] (* Harvey P. Dale, Aug 26 2013 *)

PROG

(PARI) u=1; for(n=2, 100, v=if(isprime(u), u+1, 2*u); u=v; print1(v, ", "))

CROSSREFS

Cf. A163962.

Sequence in context: A109511 A018339 A128216 * A091856 A083416 A022770

Adjacent sequences:  A080732 A080733 A080734 * A080736 A080737 A080738

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Mar 08 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 16:18 EST 2017. Contains 295939 sequences.