login
Decimal expansion of the infinite product of zeta functions for odd arguments >= 3.
3

%I #24 May 18 2024 14:52:30

%S 1,2,6,0,2,0,5,7,1,0,7,0,5,2,4,1,7,1,0,7,6,7,8,1,7,2,2,6,0,0,2,4,1,0,

%T 6,2,8,0,3,4,3,7,9,8,6,4,0,8,4,9,4,9,6,4,0,3,7,7,1,5,3,0,1,3,9,3,0,6,

%U 3,2,4,8,8,4,2,9,8,0,4,3,1,5,6,6,8,6,5,0,0,9,6,4,1,1,6,3,4,7,3,4,4,8,5,8,8

%N Decimal expansion of the infinite product of zeta functions for odd arguments >= 3.

%H Bernd C. Kellner, <a href="https://doi.org/10.1515/INTEG.2009.009">On asymptotic constants related to products of Bernoulli numbers and factorials</a>, Integers, Vol. 9 (2009), Article #A08, pp. 83-106; <a href="https://www.emis.de/journals/INTEGERS/papers/j8/j8.Abstract.html">alternative link</a>; arXiv:<a href="https://arxiv.org/abs/math/0604505">0604505</a> [math.NT], 2006.

%F Decimal expansion of zeta(3)*zeta(5)*zeta(7)*...*zeta(2k+1)*...

%F Equals A021002/A080729. - _Amiram Eldar_, Jan 31 2024

%e 1.2602057107052417107678172260024106280343...

%t RealDigits[ Product[ Zeta[ 2n + 1], {n, 500}], 10, 110][[1]] (* _Robert G. Wilson v_, Nov 21 2014 *)

%o (PARI) prodinf(x=1, zeta(2*x+1)) \\ _Michel Marcus_, Nov 22 2014

%Y Cf. A021002, A080729.

%K cons,nonn

%O 1,2

%A Deepak R. N (deepak_rn(AT)safe-mail.net), Mar 08 2003

%E More terms from _Benoit Cloitre_, Mar 08 2003