login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080682 19-smooth numbers: i.e. numbers whose prime divisors are all <= 19. 11
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 70, 72, 75, 76, 77, 78, 80, 81, 84, 85, 88, 90, 91, 95, 96, 98, 99, 100 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

William A. Tedeschi, Table of n, a(n) for n=1..10000

MATHEMATICA

mx = 120; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m*13^n*17^o*19^p, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}, {n, 0, Log[13, mx/(2^i*3^j*5^k*7^l*11^m)]}, {o, 0, Log[17, mx/(2^i*3^j*5^k*7^l*11^m*13^n)]}, {p, 0, Log[19, mx/(2^i*3^j*5^k*7^l*11^m*13^n*17^o)]}] (* Robert G. Wilson v, Jan 19 2016 *)

PROG

(PARI) test(n)= {m=n; forprime(p=2, 19, while(m%p==0, m=m/p)); return(m==1)} for(n=1, 200, if(test(n), print1(n", ")))

(MAGMA) [n: n in [1..100] | PrimeDivisors(n) subset PrimesUpTo(19)]; // Bruno Berselli, Sep 24 2012

CROSSREFS

For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080197, A080681, A080683.

Sequence in context: A214922 A004830 A081330 * A182049 A038770 A193176

Adjacent sequences:  A080679 A080680 A080681 * A080683 A080684 A080685

KEYWORD

easy,nonn

AUTHOR

Cino Hilliard, Mar 02 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 11:42 EST 2016. Contains 278874 sequences.