login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080607 Golomb's sequence using multiples of 3. 5
3, 3, 3, 6, 6, 6, 9, 9, 9, 12, 12, 12, 12, 12, 12, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 21, 21, 21, 21, 21, 21, 21, 21, 21, 24, 24, 24, 24, 24, 24, 24, 24, 24, 27, 27, 27, 27, 27, 27, 27, 27, 27, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 33, 33, 33, 33, 33, 33 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

More generally let b(k) be a sequence of integers in arithmetic progression: b(k) = A*k+B, then the Golomb's sequence a(n) using b(k) is asymptotic to tau^(2-tau)*(A*n)^(tau-1).

LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10062

FORMULA

a(n) is asymptotic to tau^(2-tau)*(3n)^(tau-1) and more precisely it seems that a(n) = round(tau^(2-tau)*(3n)^(tau-1)) +(-2, -1, +0, +1 or +1) where tau is the golden ratio.

EXAMPLE

Read 3,3,3,6,6,6,9,9,9,12,12,12,12,12,12,15 as (3,3,3),(6,6,6),(9,9,9),(12,12,12,12,12,12),... count occurrences between 2 parentheses, gives 3,3,3,6,... which is the sequence itself.

MATHEMATICA

a = {3, 3, 3}; Do[a = Join[a, Array[3i&, a[[i]]]], {i, 2, 11}]; a (* Ivan Neretin, Apr 03 2015 *)

CROSSREFS

Cf. A001462, A080606, A080605.

Sequence in context: A171601 A057944 A281258 * A013322 A211534 A219816

Adjacent sequences: A080604 A080605 A080606 * A080608 A080609 A080610

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Feb 25 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 16:00 EST 2022. Contains 358644 sequences. (Running on oeis4.)