login
Number of terms from the decimal expansion of Pi (A000796) which include every combination of n digits as consecutive subsequences.
4

%I #21 May 12 2015 10:08:19

%S 33,607,8556,99850,1369565,14118313,166100507,1816743913,22445207407,

%T 241641121049,2512258603208

%N Number of terms from the decimal expansion of Pi (A000796) which include every combination of n digits as consecutive subsequences.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConstantDigitScanning.html">Constant Digit Scanning</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PiDigits.html">Pi Digits</a>

%F a(n) = A036903(n) + 1. - _Eric W. Weisstein_, Sep 11 2013

%e a(2) = 607 because the first 607 digits of Pi contain every conceivable 2-digit subsequence but the first 606 digits do not. The combination (6, 8) appears as 606th and 607th term in A000796.

%Y Cf. A000796 (decimal expansion of Pi).

%Y Cf. A036903 (= a(n) - 1).

%Y Cf. A032510 (last digit string when scanning the decimal expansion of Pi for all n-digit strings).

%K more,nonn,base

%O 1,1

%A Martin Hasch (martin(AT)mathematik.uni-ulm.de), Feb 23 2003

%E a(7)-a(8) from _Piotr Idzik_, Nov 01 2011

%E a(9)-a(11) from A036903(n) + 1 by _Eric W. Weisstein_, Sep 11 2013