|
|
A080426
|
|
a(1)=1, a(2)=3; all terms are either 1 or 3; each run of 3's is followed by a run of two 1's; and a(n) is the length of the n-th run of 3's.
|
|
10
|
|
|
1, 3, 1, 1, 3, 3, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 3, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 3, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 3, 3, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
It appears that the sequence can be calculated by any of the following three methods: (1) Start with 1 and repeatedly replace (simultaneously) all 1's with 1,3,1 and all 3's with 1,3,3,3,1. (Equivalently, trajectory of 1 under the morphism 1 -> 1,3,1; 3 -> 1,3,3,3,1. - N. J. A. Sloane, Nov 03 2019] (2) a(n)= A026490(2n). (3) Replace each 2 in A026465 (run lengths in Thue-Morse) with 3.
Length of n-th run of 1's in the Feigenbaum sequence A035263 = 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, .... - Philippe Deléham, Apr 18 2004
Another construction. Let S_0 = 1, and let S_n be obtained by applying the morphism 1 -> 3, 3 -> 113 to S_{n-1}. The sequence is the concatenation S_0, S_1, S_2, ... - D. R. Hofstadter, Oct 23 2014
a(n+1) is the number of times n appears in A003160. - John Keith, Dec 31 2020
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
D. R. Hofstadter, Anti-Fibonacci numbers, Oct 23 2014
|
|
FORMULA
|
a(1) = 1; for n>1, a(n) = A003156(n) - A003156(n-1). - Philippe Deléham, Apr 16 2004
|
|
MATHEMATICA
|
Position[ Nest[ Flatten[# /. {0 -> {0, 2, 1}, 1 -> {0}, 2 -> {0}}]&, {0}, 8], 0] // Flatten // Differences // Prepend[#, 1]& (* Jean-François Alcover, Mar 14 2014, after Philippe Deléham *)
|
|
PROG
|
(Haskell) following Deléham
import Data.List (group)
a080426 n = a080426_list !! n
a080426_list = map length $ filter ((== 1) . head) $ group a035263_list
-- Reinhard Zumkeller, Oct 27 2014
|
|
CROSSREFS
|
Cf. A026465, A026490, A035263, A003156, A328979, A003160.
Arises in the analysis of A075326, A249031 and A249032.
Sequence in context: A094782 A035666 A060592 * A230293 A133116 A059959
Adjacent sequences: A080423 A080424 A080425 * A080427 A080428 A080429
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
John W. Layman, Feb 18 2003
|
|
STATUS
|
approved
|
|
|
|