login
A080387
Numbers k such that there are exactly 10 numbers j for which binomial(k, floor(k/2)) / binomial(k,j) is an integer, i.e., A080383(k) = 10.
8
13, 31, 41, 57, 85, 91, 133, 155, 177, 183, 209, 221, 253, 281, 307, 313, 341, 375, 381, 409, 419, 441, 457, 463, 477, 481, 533, 553, 599, 617, 625, 631, 645, 651, 661, 691, 737, 757, 829, 841, 859, 871, 881, 885, 901, 919, 929, 937, 953, 967, 987, 993
OFFSET
1,1
LINKS
EXAMPLE
For n=13, the central binomial coefficient (C(13,6) = 1716) is divisible by 10 binomial coefficients C(13,j); the 4 nondivisible cases are C(13,4), C(13,5), C(13,8), and C(13,9).
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 12 2003
STATUS
approved