%I #21 Sep 10 2019 03:02:42
%S 25,37,169,199,201,241,397,433,547,685,865,1045,1081,1585,1657,1891,
%T 1951,1969,2071,2143,2647,2901,3011,3025,3097,3151,3251,3421,3511,
%U 3727,4105,4213,4453,4771,4885,5581,5857,6019,6031,6265,6397,6967,7345,7615,7831,8425,8857,8929
%N Numbers k such that there are exactly 8 numbers j for which binomial(k, floor(k/2)) / binomial(k,j) is an integer, i.e., A080383(k) = 8.
%H Vaclav Kotesovec, <a href="/A080386/b080386.txt">Table of n, a(n) for n = 1..260</a>
%e For n=25, the central binomial coefficient (C(25,12) = 5200300) is divisible by C(25,0), C(25,1), C(25,3), C(25,12), C(25,13), C(25,22), C(25,24), and C(25,25).
%Y Cf. A327430, A080384, A080385, A327431, A080387.
%Y Cf. A001405, A057977.
%K nonn
%O 1,1
%A _Labos Elemer_, Mar 12 2003
%E More terms from _Michel Marcus_, Aug 23 2019