login
A080386
Numbers k such that there are exactly 8 numbers j for which binomial(k, floor(k/2)) / binomial(k,j) is an integer, i.e., A080383(k) = 8.
8
25, 37, 169, 199, 201, 241, 397, 433, 547, 685, 865, 1045, 1081, 1585, 1657, 1891, 1951, 1969, 2071, 2143, 2647, 2901, 3011, 3025, 3097, 3151, 3251, 3421, 3511, 3727, 4105, 4213, 4453, 4771, 4885, 5581, 5857, 6019, 6031, 6265, 6397, 6967, 7345, 7615, 7831, 8425, 8857, 8929
OFFSET
1,1
LINKS
EXAMPLE
For n=25, the central binomial coefficient (C(25,12) = 5200300) is divisible by C(25,0), C(25,1), C(25,3), C(25,12), C(25,13), C(25,22), C(25,24), and C(25,25).
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 12 2003
EXTENSIONS
More terms from Michel Marcus, Aug 23 2019
STATUS
approved