%I #12 Apr 25 2019 03:31:37
%S 7629217,18814027,29998837,41183647,52368457,63553267,74738077,
%T 85922887,97107697,108292507,119477317,130662127,141846937,153031747,
%U 164216557,175401367,186586177,197770987,208955797,220140607,231325417,242510227
%N First known infinite sequence containing no odd integer of the form 2^m+p (p prime).
%C To a question of Romanoff: Are there infinitely many odd integers not of the form 2^m+p where p is prime? Erdõs answered Yes in 1950 by constructing the present sequence, an infinite arithmetic sequence, using a system of congruences.
%H P. Erdõs, <a href="https://users.renyi.hu/~p_erdos/1950-07.pdf">On integers of form 2^n+p and some related problems</a>, Summa Brasil Math.11 (1950), pp. 1-11
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H T. Zamojski, <a href="https://web.archive.org/web/20040728125902/http://www.math.mcgill.ca/~dsavitt/nt/projects/zamojski.ps">Survey on covering congruences</a>.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1).
%F a(n) = n*11184810 + 7629217.
%K nonn
%O 0,1
%A _Benoit Cloitre_, Mar 19 2003