

A080254


For n>3, a(n) is the number of elements in the Coxeter complex of type D_n (although the sequence starts at n=0. See comments below for precise explanation).


5



1, 1, 9, 75, 865, 12483, 216113, 4364979, 100757313, 2616517443, 75496735057, 2396212835283, 82968104980961, 3112139513814243, 125716310807844081, 5441108944839913587, 251195548533025953409, 12321551453507301079683
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

The sequence makes most sense when n>3. The values for a(2) and a(3) make sense if we regard D_2=A_1 x A_1 and D_3=A_3. The values for a(0) and a(1) have to be regarded as conventions and were included to give a nice recursive description. The corresponding sequence for type B is A080253. There one can find a worked example as well as a geometric interpretation.
Also, Eulerian Dpolynomials (A066094) evaluated at 2.  Ralf Stephan, Apr 23 2004


REFERENCES

Kenneth S. Brown, Buildings, SpringerVerlag, 1988


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200
Joël Gay, Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.


FORMULA

a(0)=a(1)=1. For n>1, a(n)=1 + sum('2^r*binomial(n, r)*a(nr)', 'r'=1..n)
E.g.f: (2*xexp(x))/(exp(2*x)2)  Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 14 2003
a(n) ~ n! * (sqrt(2)/log(2)1)/2 * (2/log(2))^n.  Vaclav Kotesovec, Oct 08 2013


MATHEMATICA

CoefficientList[Series[(2*xE^x)/(E^(2*x)2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)


CROSSREFS

Cf. A000670, A080253.
Sequence in context: A231592 A126965 A066222 * A190916 A161736 A226180
Adjacent sequences: A080251 A080252 A080253 * A080255 A080256 A080257


KEYWORD

easy,nonn


AUTHOR

Paul Boddington & Tim Honeywill, Feb 10 2003


EXTENSIONS

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 14 2003


STATUS

approved



