

A080216


First C(n,j) binomial coefficients are reduced modulo j, j=1,..n (0 is omitted); a(n) is the largest residue in the nth row i.e. if n is fixed and j runs over {1,..,n}.


0



0, 1, 1, 1, 1, 3, 3, 4, 2, 5, 5, 7, 7, 7, 11, 8, 8, 9, 9, 13, 16, 11, 11, 15, 15, 13, 21, 18, 18, 18, 18, 18, 26, 26, 21, 25, 25, 21, 31, 28, 28, 29, 29, 31, 39, 27, 27, 36, 34, 31, 41, 34, 34, 45, 45, 36, 46, 46, 46, 43, 43, 41, 51, 40, 48, 52, 52, 52, 56, 44, 44, 52, 52, 57, 61
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


LINKS

Table of n, a(n) for n=1..75.


FORMULA

a(n)=Max{Mod[C(n, j), j], n=1..n}


EXAMPLE

n=13: {Mod[C[13,j],j],j=1..13}={0,0,1,3,2,0,1,7,4,6,1,1,1} so largest 7=a(13).


MATHEMATICA

Table[Max[Table[Mod[Binomial[n, j], j], {j, 1, n}]], {n, 1, 256]


CROSSREFS

Cf. A007318, A081370, A081371, A080217.
Sequence in context: A062366 A278635 A057937 * A082924 A159636 A023647
Adjacent sequences: A080213 A080214 A080215 * A080217 A080218 A080219


KEYWORD

nonn


AUTHOR

Labos Elemer, Mar 21 2003


STATUS

approved



