This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080194 7-smooth numbers which are not 5-smooth. 15
 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 84, 98, 105, 112, 126, 140, 147, 168, 175, 189, 196, 210, 224, 245, 252, 280, 294, 315, 336, 343, 350, 378, 392, 420, 441, 448, 490, 504, 525, 560, 567, 588, 630, 672, 686, 700, 735, 756, 784, 840, 875, 882, 896, 945, 980 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers of the form 7*2^r*3^s*5^t*7^u with r, s, t, u >= 0. Multiples of 7 which are members of A002473. Or multiples of 7 with the largest prime divisor < 10. Numbers whose greatest prime factor (A006530) is 7. - M. F. Hasler, Nov 21 2018 LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 FORMULA a(n) = 7 * A002473(n). - David A. Corneth, Nov 22 2018 EXAMPLE 28 = 2^2*7 is a term but 30 = 2*3*5 is not. MATHEMATICA Select[Range[999], FactorInteger[#][[-1, 1]] == 7 &] (* Giovanni Resta, Nov 22 2018 *) PROG (PARI) A080194_list(M)={my(L=List(), a, b, c); for(r=1, logint(M\1, 7), a=7^r; for(s=0, logint(M\a, 3), b=a*3^s; for(t=0, logint(M\b, 5), c=b*5^t; for(u=0, logint(M\c, 2), listput(L, c<1 && vecmax(factor(n, 7)[, 1])==7}, [0..10^3]) \\ Defines is_A080194(), used elsewhere. The select() command is a check and illustration. For longer lists, use list() above. - M. F. Hasler, Nov 21 2018 CROSSREFS Cf. A002473, A051037. Cf. A085125, A085126, A085127, A085128, A085129, A085131, A085132. Sequence in context: A182341 A008589 A085130 * A206717 A043393 A028437 Adjacent sequences:  A080191 A080192 A080193 * A080195 A080196 A080197 KEYWORD easy,nonn AUTHOR Klaus Brockhaus, Feb 10 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 12:22 EDT 2019. Contains 327078 sequences. (Running on oeis4.)