login
A080157
Greedy frac multiples of gamma: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=gamma, where "frac(y)" denotes the fractional part of y.
1
1, 2, 7, 9, 26, 52, 149, 272, 395, 790, 1185, 1580, 5653, 10911, 16169, 26685, 58628, 85313, 117256, 175884, 559595, 2179752, 5420066
OFFSET
1,2
EXAMPLE
a(3) = 7 since frac(1x) + frac(2x) + frac(7x) < 1, while frac(1x) + frac(2x) + frac(k*x) > 1 for all k>2 and k<7.
MAPLE
Digits := 1000: a := []: s := 0: x := evalf(gamma): for n from 1 to 10000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a), n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;
CROSSREFS
Cf. A079938, A079939, A079940, A079941, A080142. Searching in the OEIS for "greedy frac" gives related sequences.
Sequence in context: A042929 A082962 A041197 * A203801 A081999 A319629
KEYWORD
nonn
AUTHOR
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
STATUS
approved