login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080100 a(n) = 2^(number of 0's in binary representation of n). 13
1, 1, 2, 1, 4, 2, 2, 1, 8, 4, 4, 2, 4, 2, 2, 1, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1, 32, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4, 4, 2, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1, 64, 32, 32, 16, 32, 16, 16, 8, 32, 16, 16, 8, 16, 8, 8, 4, 32, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of numbers k, 0<=k<=n, such that (k AND n) = 0 (bitwise logical AND): a(n) = #{k : T(n,k)=n, 0<=k<=n}, where T is defined as in A080099.

Same parity as the Catalan numbers (A000108). - Paul D. Hanna, Nov 14 2012

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..8191

R. Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.

FORMULA

G.f. satisfies: F(x^2) = (1+F(x))/(x+2). - Ralf Stephan, Jun 28 2003

a(2n) = 2a(n), n>0. a(2n+1) = a(n). - Ralf Stephan, Apr 29 2003

a(n) = 2^A080791(n). a(n)=2^A023416(n), n>0.

a(n) = sum(k=0, n, C(n+k, k) mod 2). - Benoit Cloitre, Mar 06 2004

a(n) = sum(k=0, n, C(2n-k, n) mod 2). - Paul Barry, Dec 13 2004

G.f. satisfies: A(x) = Sum_{n>=0} [A(x)^n (mod 2)]*x^n, where A(x)^n (mod 2) reduces all coefficients modulo 2 to {0,1}. - Paul D. Hanna, Nov 14 2012

MATHEMATICA

f[n_] := 2^DigitCount[n, 2, 0]; f[0] = 1; Array[f, 94, 0] (* Robert G. Wilson v *)

PROG

(PARI) a(n)=if(n<1, n==0, (2-n%2)*a(n\2))

(PARI) a(n)=local(A, m); if(n<0, 0, m=1; A=1+O(x); while(m<=n, m*=2; A=subst(A, x, x^2)*(2+x)-1); polcoeff(A, n))

(Haskell)

import Data.List (transpose)

a080100 n = a080100_list !! n

a080100_list =  1 : zs where

   zs =  1 : (concat $ transpose [map (* 2) zs, zs])

-- Reinhard Zumkeller, Aug 27 2014, Mar 07 2011

CROSSREFS

Cf. A001316.

Cf. A002487.

This is Guy Steele's sequence GS(5, 3) (see A135416).

Cf. A048896.

Sequence in context: A120025 A109090 A220780 * A161822 A001176 A136693

Adjacent sequences:  A080097 A080098 A080099 * A080101 A080102 A080103

KEYWORD

nonn,base

AUTHOR

Reinhard Zumkeller, Jan 28 2003

EXTENSIONS

Keyword base added by Rémy Sigrist, Jan 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 02:33 EST 2019. Contains 320200 sequences. (Running on oeis4.)