This site is supported by donations to The OEIS Foundation.

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080073 Let f(n)! = n^n. Then f(n) = n g(1/log(n)), where g has the asymptotic series g(x) = Sum a(j) x^j/j!. The given sequence is a(j). 0

%I

%S 1,1,0,-3,4,50,-264,-1638,25264,40896,-3357360,13380840,559239264,

%T -7126367664,-98536058880,3137828374800,8293939695360,

%U -1427422903584000,10789876955529216,666226173751955712,-14427332604300810240,-279534553922071445760

%N Let f(n)! = n^n. Then f(n) = n g(1/log(n)), where g has the asymptotic series g(x) = Sum a(j) x^j/j!. The given sequence is a(j).

%F E.g.f. A(x), safisfies A(x)=1+x*(A(x))*(1-log(A(x)),

%F a(n)=((n-1)!*sum(i=0..n-1, (binomial(n,i)*sum(j=0..n, j!*(-1)^(j)*binomial(n,j)*stirling1(n-i-1,j)))/(n-i-1)!)), n>0, a(0)=1. [_Vladimir Kruchinin_, Oct 13 2012]

%e f(n) = n (1 + 1/log(n) - 1/(2 log(n)^3) + ...), so a(0) = 1, a(1) = 1, a(2) = 0 and a(3) = (-1/2)*3! = -3.

%o (Maxima)

%o a(n):=if n=0 then 1 else ((n-1)!*sum((binomial(n,i)*sum(j!*(-1)^(j)*binomial(n,j)*stirling1(n-i-1,j),j,0,n))/(n-i-1)!,i,0,n-1)); [_Vladimir Kruchinin_, Oct 13 2012]

%K easy,sign

%O 0,4

%A Jim Ferry (jferry(AT)alum.mit.edu), Mar 14 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 21 11:17 EST 2014. Contains 249777 sequences.