This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080048 Operation count to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of loop repetitions in reversal step. 5
 1, 7, 34, 182, 1107, 7773, 62212, 559948, 5599525, 61594835, 739138086, 9608795202, 134523132919, 2017846993897, 32285551902472, 548854382342168, 9879378882159177, 187708198761024543, 3754163975220491050 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 REFERENCES D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link. LINKS FORMULA a(2)=1, a(n)=n*a(n-1) + (n-1)*floor[(n+1)/2] for n>=3. c = limit n --> infinity a(n)/n! = 1.54308063481524377826 = (e+1/e)/2 a(n) = floor [c*n!-(n+1)/2] for n>=2. PROG FORTRAN program available at link. CROSSREFS Cf. A038155, A038156, A056542, A080047, A080049, A079755. Sequence in context: A209890 A027209 A209807 * A177140 A027233 A117650 Adjacent sequences:  A080045 A080046 A080047 * A080049 A080050 A080051 KEYWORD nonn AUTHOR Hugo Pfoertner, Jan 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .