%I
%S 127,343,736,1285,2187,2502,2592,2737,3125,3685,3864,3972,4096,6455,
%T 11264,11664,12850,13825,14641,15552,15585,15612,15613,15617,15618,
%U 15621,15622,15623,15624,15626,15632,15633,15642,15645,15655,15656
%N "Orderly" Friedman numbers (or "good" Friedman numbers): Friedman numbers (A036057) where the construction digits are used in the proper order.
%C Primes in this sequence are listed in A252483. The subsequence A156954 is a "simplified" variant where no parentheses, unary operations (negation) nor concatenation is allowed.  _M. F. Hasler_, Jan 07 2015
%D Credit goes to Mike Reid (Brown University) and Eric Friedman (Stetson University).
%D Colin Rose, "Radical Narcissistic numbers", J. Recreational Mathematics, vol. 33, (20042005), pp. 250254. See page 251.
%H M. Brand, <a href="http://dx.doi.org/10.1016/j.dam.2013.05.027">Friedman numbers have density 1</a>, Discrete Applied Mathematics, Volume 161, Issues 1617, November 2013, Pages 23892395.
%H Ed Copeland and Brady Haran, <a href="https://www.youtube.com/watch?v=I7v2wAXFQpc">Friedman numbers  Numberphile</a>, 2014
%H Eric Friedman, <a href="http://www.stetson.edu/~efriedma/mathmagic/0800.html">Friedman Numbers</a>.
%H Robert G. Wilson v, <a href="/A080035/a080035.txt">Table of n, a(n) for n = 1..108 </a>.
%e 127 = 1 + 2^7, 343 = (3 + 4) ^ 3, 736 = 7 + 3^6, etc.
%e The 4th "orderly" Freidman number is 1285 = (1 + 2^8) * 5.
%Y Cf. A036057.
%K nonn,base,nice
%O 1,1
%A David Rattner (david_rattner(AT)prusec.com), Mar 14 2003
%E More terms from _Alonso del Arte_, Aug 25 2004
%E Edited by _M. F. Hasler_, Jan 07 2015
