

A080034


a(n) is taken to be the smallest positive integer not already present which is consistent with the condition "n is a member of the sequence if and only if a(n) is congruent to 3 mod 4".


1



1, 3, 4, 7, 11, 6, 15, 19, 9, 23, 12, 27, 31, 14, 35, 39, 17, 43, 20, 47, 51, 22, 55, 59, 25, 63, 28, 67, 71, 30, 75, 79, 33, 83, 36, 87, 91, 38, 95, 99, 41, 103, 44, 107, 111, 46, 115, 119, 49, 123, 52, 127, 131, 54, 135, 139, 57, 143, 60, 147, 151, 62, 155, 159, 65, 163
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..65.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308)


FORMULA

From Chai Wah Wu, Sep 27 2016: (Start)
a(n) = 2*a(n8)  a(n16) for n > 15.
G.f.: (x^15 + 5*x^14 + 2*x^13 + 9*x^12 + 13*x^11 + 4*x^10 + 17*x^9 + 7*x^8 + 19*x^7 + 15*x^6 + 6*x^5 + 11*x^4 + 7*x^3 + 4*x^2 + 3*x + 1)/(x^16  2*x^8 + 1). (End)


CROSSREFS

Equals A080033(n+1)1.
Sequence in context: A291609 A291870 A002887 * A061447 A219188 A283428
Adjacent sequences: A080031 A080032 A080033 * A080035 A080036 A080037


KEYWORD

easy,nonn


AUTHOR

N. J. A. Sloane, Mar 14 2003


EXTENSIONS

More terms from Matthew Vandermast, Mar 23 2003


STATUS

approved



