login
A080011
Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=2, r=3, I={-1}.
1
1, 1, 1, 3, 7, 15, 29, 59, 126, 262, 542, 1121, 2328, 4839, 10039, 20827, 43220, 89704, 186172, 386345, 801768, 1663916, 3453137, 7166272, 14872078, 30863935, 64051787, 132926308, 275861116, 572492846, 1188091024, 2465638247
OFFSET
0,4
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135
FORMULA
a(n) = a(n-1)+a(n-2)+a(n-3)+2*a(n-4)+3*a(n-5)-a(n-6)+a(n-8)-a(n-9)-a(n-10).
G.f.: -(x^5+x^2-1)/(x^10+x^9-x^8+x^6-3*x^5-2*x^4-x^3-x^2-x+1)
MATHEMATICA
LinearRecurrence[{1, 1, 1, 2, 3, -1, 0, 1, -1, -1}, {1, 1, 1, 3, 7, 15, 29, 59, 126, 262}, 40] (* Harvey P. Dale, Nov 03 2022 *)
KEYWORD
nonn
AUTHOR
Vladimir Baltic, Feb 10 2003
STATUS
approved