login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079946 Binary expansion of n has form 11**...*0. 11

%I

%S 6,12,14,24,26,28,30,48,50,52,54,56,58,60,62,96,98,100,102,104,106,

%T 108,110,112,114,116,118,120,122,124,126,192,194,196,198,200,202,204,

%U 206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246

%N Binary expansion of n has form 11**...*0.

%C a(n) = b(n+1), with b(2n) = 2b(n), b(2n+1) = 2b(n)+2+4[n==0]. - _Ralf Stephan_, Oct 11 2003

%H Harvey P. Dale, <a href="/A079946/b079946.txt">Table of n, a(n) for n = 1..1000</a>

%H B. Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">Numerical analogues of Aronson's sequence</a>, J. Integer Seqs., Vol. 6 (2003), #03.2.2.

%H B. Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="http://arXiv.org/abs/math.NT/0305308">Numerical analogues of Aronson's sequence</a> (math.NT/0305308)

%H R. Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a>

%H R. Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>

%F a(n) = 2^floor(log[2](4*n))+2*n. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 22 2003

%F a(n) = (2^(floor(log(n)/log(2))+1)+n)*2. - _Klaus Brockhaus_, Feb 23 2003

%F a(2n) = 2a(n), a(2n+1) = 2a(n) + 2 + 4[n==0]. Twice A004755. - _Ralf Stephan_, Oct 12 2003

%p A079446 := n -> 2*(2^(1+A000523(n))+n);

%t Table[Union[FromDigits[Join[{1,1},#,{0}],2]&/@Tuples[{1,0},n]],{n,0,5}]//Flatten (* _Harvey P. Dale_, Jan 16 2018 *)

%o (PARI) for(n=0,6, for(k=2^(n-1),2^n-1,print1((2^n+k)*2,",")))

%o (PARI) for(n=1,59,print1((2^(floor(log(n)/log(2))+1)+n)*2,","))

%Y A004755 = union of this and A080565. A057547(n) = a(A014486(n)) for n >= 1.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_, Feb 21 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 12:48 EST 2019. Contains 320163 sequences. (Running on oeis4.)