login
A079931
Greedy powers of (1/sqrt(Pi)): Sum_{n>=1} (1/sqrt(Pi))^a(n) = 1.
2
1, 2, 4, 8, 9, 16, 20, 22, 23, 32, 33, 36, 39, 42, 43, 46, 47, 50, 51, 55, 59, 60, 63, 69, 74, 77, 80, 82, 87, 92, 94, 97, 100, 102, 105, 107, 111, 113, 114, 117, 119, 122, 126, 128, 129, 134, 141, 142, 146, 147, 150, 151, 154, 157, 160, 162, 165, 167, 168, 171, 175
OFFSET
1,2
COMMENTS
The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series Sum_{k=1..n} x^a(k) to exceed unity.
FORMULA
a(n) = Sum_{k=1..n} floor(g_k) where g_1=1, g_{n+1} = log_x(x^frac(g_n) - x) (n > 0) at x = (1/sqrt(Pi)) and frac(y) = y - floor(y).
EXAMPLE
a(3)=4 since (1/sqrt(Pi)) + (1/sqrt(Pi))^2 + (1/sqrt(Pi))^4 < 1 and (1/sqrt(Pi)) + (1/sqrt(Pi))^2 + (1/sqrt(Pi))^3 > 1; the power 3 makes the sum > 1, so 4 is the 3rd greedy power of (1/sqrt(Pi)).
KEYWORD
easy,nonn
AUTHOR
Ulrich Schimke (ulrschimke(AT)aol.com), Jan 16 2003
STATUS
approved