OFFSET
0,2
COMMENTS
f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
Jaap Spies, Sage program for computing A079911.
Jaap Spies, Sage program for computing the polynomial a(n).
Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(0)=1, a(2)=7, a(3)=79, a(n)=n^6-9*n^5+60*n^4-225*n^3+555*n^3-774*n+484.
G.f.: -(6*x^10 -29*x^9 +120*x^8 -49*x^7 +267*x^6 +105*x^5 +211*x^4 +37*x^3 +51*x^2 +1) / (x -1)^7. - Colin Barker, Jan 04 2015
MAPLE
seq(n^6-9*n^5+60*n^4-225*n^3+555*n^2-774*n+484, n=4..40);
MATHEMATICA
CoefficientList[Series[-(6 x^10 - 29 x^9 + 120 x^8 - 49 x^7 + 267 x^6 + 105 x^5 + 211 x^4 + 37 x^3 + 51 x^2 + 1)/(x - 1)^7, {x, 0, 28}], x] (* Michael De Vlieger, Dec 23 2019 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 7, 79, 478, 2108, 7364, 21652, 55532, 127604, 268108, 523244}, 40] (* Harvey P. Dale, Jul 02 2022 *)
PROG
(PARI) Vec(-(6*x^10 -29*x^9 +120*x^8 -49*x^7 +267*x^6 +105*x^5 +211*x^4 +37*x^3 +51*x^2 +1) / (x -1)^7 + O(x^100)) \\ Colin Barker, Jan 04 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaap Spies, Jan 28 2003
STATUS
approved