OFFSET
0,2
COMMENTS
f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X (g+h) with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Jaap Spies, Dancing School Problems, Permanent solutions of Problem 29, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
Jaap Spies, Sage program for computing A079910.
Jaap Spies, Sage program for computing the polynomial a(n).
Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(0)=1, a(1)=6, a(2)=46, a(n) = n^5 - 5*n^4 + 25*n^3 - 55*n^2 + 80*n - 46.
G.f.: (6*x^7 + 11*x^6 + 20*x^5 + 51*x^4 + 6*x^3 + 25*x^2 + 1) / (x-1)^6. - Colin Barker, Jan 04 2015
E.g.f.: 47 + 6*x + exp(x)*(-46 + 46*x + 20*x^3 + 5*x^4 + x^5). - Stefano Spezia, Dec 18 2019
MATHEMATICA
CoefficientList[Series[(6 x^7 + 11 x^6 + 20 x^5 + 51 x^4 + 6 x^3 + 25 x^2 + 1) / (x - 1)^6, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 17 2015 *)
PROG
(PARI) Vec((6*x^7+11*x^6+20*x^5+51*x^4+6*x^3+25*x^2+1)/(x-1)^6 + O(x^100)) \\ Colin Barker, Jan 04 2015
(Magma) [1, 6] cat [n^5-5*n^4+25*n^3-55*n^2+80*n-46: n in [2..30]]; // Vincenzo Librandi, Feb 17 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaap Spies, Jan 28 2003
EXTENSIONS
More terms from Benoit Cloitre, Jan 29 2003
STATUS
approved