OFFSET
0,2
COMMENTS
f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
Jaap Spies, Sage program for computing A079909.
Jaap Spies, Sage program for computing the polynomial a(n).
Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(0)=1, a(1)=5, a(n)=n^4 - 2*n^3 + 9*n^2 - 8*n + 6 (n>=2) found by applying theorem 7.2.1 of Brualdi, Ryser: Combinatorial Matrix Theory.
G.f.: -(x^2+1)*(x^4+10*x^2+1) / (x-1)^5. - Colin Barker, Jan 04 2015
E.g.f.: exp(x)*(6 + 10*x^2 + 4*x^3 + x^4) - 5 - x. - Stefano Spezia, Dec 18 2019
PROG
(PARI) Vec(-(x^2+1)*(x^4+10*x^2+1)/(x-1)^5 + O(x^100)) \\ Colin Barker, Jan 04 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaap Spies, Jan 28 2003
EXTENSIONS
More terms from Benoit Cloitre, Jan 29 2003
STATUS
approved