The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079904 Triangle read by rows: T(n, k) = n*k, 0<=k<=n. 4
 0, 0, 1, 0, 2, 4, 0, 3, 6, 9, 0, 4, 8, 12, 16, 0, 5, 10, 15, 20, 25, 0, 6, 12, 18, 24, 30, 36, 0, 7, 14, 21, 28, 35, 42, 49, 0, 8, 16, 24, 32, 40, 48, 56, 64, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS T(n, k) = if k=0 then 0 else T(n,k-1)+n; T(n, 0)=1; T(n, 1)=n for n>0; T(n, 2)=A005843(n) for n>1; T(n, 3)=A008585(n) for n>2; T(n, 4)=A008586(n) for n>3; T(n, n-2)=A005563(n-1) for n>1; T(n, n-1)=A002378(n-1) for n>0; T(n, n)=A000290(n). See the comment in A025581 on a problem posed by François Viète (Vieta) 1593, where this triangle is related to A025581 and A257238. - Wolfdieter Lang, May 12 2015 LINKS FORMULA T(n, k) = n*k, 0 <= k <= n. T(n, k) = (A257238(n, k) - A025581(n, k)^3) / (3*A025581(n, k)). See the Viète comment above. - Wolfdieter Lang, May 12 2015 From Robert Israel, May 12 2015: (Start) G.f. as triangle: (1 + x*y - 2*x^2*y)*x*y/((1-x)^2*(1-x*y)^3). G.f. as sequence: -Sum(n >= 0, (n^2-n)*x^(n*(n+1)/2))/(1-x) + Sum(n >= 1, x^(n*(n+1)/2)) * x/(1-x)^2.  These sums are related to Jacobi Theta functions. (End) EXAMPLE The triangle T(n, k) begins: n\k 0  1  2  3  4  5  6  7  8  9  10 ... 0:  0 1:  0  1 2:  0  2  4 3:  0  3  6  9 4:  0  4  8 12 16 5:  0  5 10 15 20 25 6:  0  6 12 18 24 30 36 7:  0  7 14 21 28 35 42 49 8:  0  8 16 24 32 40 48 56 64 9:  0  9 18 27 36 45 54 63 72 81 10: 0 10 20 30 40 50 60 70 80 90 100 ... - Wolfdieter Lang, May 12 2015 MAPLE seq(seq(n*k, k=0..n), n=0..10); # Robert Israel, May 12 2015 CROSSREFS Cf. A075362 (without column k=0), A025581, A025581. Sequence in context: A112635 A222757 A004568 * A175630 A021420 A330473 Adjacent sequences:  A079901 A079902 A079903 * A079905 A079906 A079907 KEYWORD nonn,easy,tabl AUTHOR Reinhard Zumkeller, Feb 21 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 08:08 EDT 2020. Contains 336274 sequences. (Running on oeis4.)